Capybara helps you test web applications by simulating how a real user would interact with your app. It is agnostic about the driver running your tests and comes with Rack::Test and Selenium support built in. WebKit is supported through an external gem.

Need help? Ask on the mailing list (please do not open an issue on GitHub): http://groups.google.com/group/ruby-capybara

Table of contents

Key benefits

  • No setup necessary for Rails and Rack application. Works out of the box.
  • Intuitive API which mimics the language an actual user would use.
  • Switch the backend your tests run against from fast headless mode to an actual browser with no changes to your tests.
  • Powerful synchronization features mean you never have to manually wait for asynchronous processes to complete.


Capybara requires Ruby 1.9.3 or later. To install, add this line to your Gemfile and run bundle install:

gem 'capybara'

If the application that you are testing is a Rails app, add this line to your test helper file:

require 'capybara/rails'

Note: In Rails 4.0/4.1 the default test environment (config/environments/test.rb) is not threadsafe. If you experience random errors about missing constants, add config.allow_concurrency = false to config/environments/test.rb.

If the application that you are testing is a Rack app, but not Rails, set Capybara.app to your Rack app:

Capybara.app = MyRackApp

If you need to test JavaScript, or if your app interacts with (or is located at) a remote URL, you’ll need to use a different driver.

Using Capybara with Cucumber

The cucumber-rails gem comes with Capybara support built-in. If you are not using Rails, manually load the capybara/cucumber module:

require 'capybara/cucumber'
Capybara.app = MyRackApp

You can use the Capybara DSL in your steps, like so:

When /I sign in/ do
  within("#session") do
    fill_in 'Email', :with => '[email protected]'
    fill_in 'Password', :with => 'password'
  click_button 'Sign in'

You can switch to the Capybara.javascript_driver (:selenium by default) by tagging scenarios (or features) with @javascript:

Scenario: do something Ajaxy
  When I click the Ajax link

There are also explicit @selenium and @rack_test tags set up for you.

Using Capybara with RSpec

Load RSpec 2.x support by adding the following line (typically to your spec_helper.rb file):

require 'capybara/rspec'

If you are using Rails, put your Capybara specs in spec/features.

If you are not using Rails, tag all the example groups in which you want to use Capybara with :type => :feature.

You can now write your specs like so:

describe "the signin process", :type => :feature do
  before :each do
    User.make(:email => '[email protected]', :password => 'password')

  it "signs me in" do
    visit '/sessions/new'
    within("#session") do
      fill_in 'Email', :with => '[email protected]'
      fill_in 'Password', :with => 'password'
    click_button 'Sign in'
    expect(page).to have_content 'Success'

Use :js => true to switch to the Capybara.javascript_driver (:selenium by default), or provide a :driver option to switch to one specific driver. For example:

describe 'some stuff which requires js', :js => true do
  it 'will use the default js driver'
  it 'will switch to one specific driver', :driver => :webkit

Finally, Capybara also comes with a built in DSL for creating descriptive acceptance tests:

feature "Signing in" do
  background do
    User.make(:email => '[email protected]', :password => 'caplin')

  scenario "Signing in with correct credentials" do
    visit '/sessions/new'
    within("#session") do
      fill_in 'Email', :with => '[email protected]'
      fill_in 'Password', :with => 'caplin'
    click_button 'Sign in'
    expect(page).to have_content 'Success'

  given(:other_user) { User.make(:email => '[email protected]', :password => 'rous') }

  scenario "Signing in as another user" do
    visit '/sessions/new'
    within("#session") do
      fill_in 'Email', :with => other_user.email
      fill_in 'Password', :with => other_user.password
    click_button 'Sign in'
    expect(page).to have_content 'Invalid email or password'

feature is in fact just an alias for describe ..., :type => :feature, background is an alias for before, scenario for it, and given/given! aliases for let/let!, respectively.

Using Capybara with Test::Unit

  • If you are using Rails, add the following code in your test_helper.rb file to make Capybara available in all test cases deriving from ActionDispatch::IntegrationTest:
    class ActionDispatch::IntegrationTest
      # Make the Capybara DSL available in all integration tests
      include Capybara::DSL
  • If you are not using Rails, define a base class for your Capybara tests like so:
    class CapybaraTestCase < Test::Unit::TestCase
      include Capybara::DSL
      def teardown

    Remember to call super in any subclasses that override teardown.

To switch the driver, set Capybara.current_driver. For instance,

class BlogTest < ActionDispatch::IntegrationTest
  setup do
    Capybara.current_driver = Capybara.javascript_driver # :selenium by default

  test 'shows blog posts' do
    # ... this test is run with Selenium ...

Using Capybara with MiniTest::Spec

Set up your base class as with Test::Unit. (On Rails, the right base class could be something other than ActionDispatch::IntegrationTest.)

The capybara_minitest_spec gem (GitHub, rubygems.org) provides MiniTest::Spec expectations for Capybara. For example:



Capybara uses the same DSL to drive a variety of browser and headless drivers.

Selecting the Driver

By default, Capybara uses the :rack_test driver, which is fast but limited: it does not support JavaScript, nor is it able to access HTTP resources outside of your Rack application, such as remote APIs and OAuth services. To get around these limitations, you can set up a different default driver for your features. For example if you’d prefer to run everything in Selenium, you could do:

Capybara.default_driver = :selenium

However, if you are using RSpec or Cucumber, you may instead want to consider leaving the faster :rack_test as the default_driver, and marking only those tests that require a JavaScript-capable driver using :js => true or @javascript, respectively. By default, JavaScript tests are run using the :selenium driver. You can change this by setting Capybara.javascript_driver.

You can also change the driver temporarily (typically in the Before/setup and After/teardown blocks):

Capybara.current_driver = :webkit # temporarily select different driver
... tests ...
Capybara.use_default_driver       # switch back to default driver

Note: switching the driver creates a new session, so you may not be able to switch in the middle of a test.


RackTest is Capybara’s default driver. It is written in pure Ruby and does not have any support for executing JavaScript. Since the RackTest driver interacts directly with Rack interfaces, it does not require a server to be started. However, this means that if your application is not a Rack application (Rails, Sinatra and most other Ruby frameworks are Rack applications) then you cannot use this driver. Furthermore, you cannot use the RackTest driver to test a remote application, or to access remote URLs (e.g., redirects to external sites, external APIs, or OAuth services) that your application might interact with.

capybara-mechanize provides a similar driver that can access remote servers.

RackTest can be configured with a set of headers like this:

Capybara.register_driver :rack_test do |app|
  Capybara::RackTest::Driver.new(app, :headers => { 'HTTP_USER_AGENT' => 'Capybara' })

See the section on adding and configuring drivers.


At the moment, Capybara supports Selenium 2.0 (Webdriver), not Selenium RC. In order to use Selenium, you’ll need to install the selenium-webdriver gem, and add it to your Gemfile if you’re using bundler. Provided Firefox is installed, everything is set up for you, and you should be able to start using Selenium right away.

Note: drivers which run the server in a different thread may not share the same transaction as your tests, causing data not to be shared between your test and test server, see “Transactions and database setup” below.


The capybara-webkit driver is for true headless testing. It uses QtWebKit to start a rendering engine process. It can execute JavaScript as well. It is significantly faster than drivers like Selenium since it does not load an entire browser.

You can install it with:

gem install capybara-webkit

And you can use it by:

Capybara.javascript_driver = :webkit


Poltergeist is another headless driver which integrates Capybara with PhantomJS. It is truly headless, so doesn’t require Xvfb to run on your CI server. It will also detect and report any Javascript errors that happen within the page.


A complete reference is available at rubydoc.info.

Note: All searches in Capybara are case sensitive. This is because Capybara heavily uses XPath, which doesn’t support case insensitivity.


You can use the visit method to navigate to other pages:


The visit method only takes a single parameter, the request method is always GET.

You can get the current path of the browsing session for test assertions:

expect(current_path).to eq(post_comments_path(post))

Clicking links and buttons

Full reference: Capybara::Node::Actions

You can interact with the webapp by following links and buttons. Capybara automatically follows any redirects, and submits forms associated with buttons.

click_link('Link Text')
click_on('Link Text') # clicks on either links or buttons
click_on('Button Value')

Interacting with forms

Full reference: Capybara::Node::Actions

There are a number of tools for interacting with form elements:

fill_in('First Name', :with => 'John')
fill_in('Password', :with => 'Seekrit')
fill_in('Description', :with => 'Really Long Text...')
choose('A Radio Button')
check('A Checkbox')
uncheck('A Checkbox')
attach_file('Image', '/path/to/image.jpg')
select('Option', :from => 'Select Box')


Full reference: Capybara::Node::Matchers

Capybara has a rich set of options for querying the page for the existence of certain elements, and working with and manipulating those elements.

page.has_selector?('table tr')
page.has_selector?(:xpath, '//table/tr')

page.has_css?('table tr.foo')

Note: The negative forms like has_no_selector? are different from not has_selector?. Read the section on asynchronous JavaScript for an explanation.

You can use these with RSpec’s magic matchers:

expect(page).to have_selector('table tr')
expect(page).to have_selector(:xpath, '//table/tr')

expect(page).to have_xpath('//table/tr')
expect(page).to have_css('table tr.foo')
expect(page).to have_content('foo')


Full reference: Capybara::Node::Finders

You can also find specific elements, in order to manipulate them:

find_field('First Name').value

find(:xpath, "//table/tr").click
all('a').each { |a| a[:href] }

Note: find will wait for an element to appear on the page, as explained in the Ajax section. If the element does not appear it will raise an error.

These elements all have all the Capybara DSL methods available, so you can restrict them to specific parts of the page:

expect(find('#navigation')).to have_button('Sign out')


Capybara makes it possible to restrict certain actions, such as interacting with forms or clicking links and buttons, to within a specific area of the page. For this purpose you can use the generic within method. Optionally you can specify which kind of selector to use.

within("li#employee") do
  fill_in 'Name', :with => 'Jimmy'

within(:xpath, "//li[@id='employee']") do
  fill_in 'Name', :with => 'Jimmy'

There are special methods for restricting the scope to a specific fieldset, identified by either an id or the text of the fieldset’s legend tag, and to a specific table, identified by either id or text of the table’s caption tag.

within_fieldset('Employee') do
  fill_in 'Name', :with => 'Jimmy'

within_table('Employee') do
  fill_in 'Name', :with => 'Jimmy'

Working with windows

Capybara provides some methods to ease finding and switching windows:

facebook_window = window_opened_by do
  click_button 'Like'
within_window facebook_window do
  find('#login_email').set('[email protected]')
  click_button 'Submit'


In drivers which support it, you can easily execute JavaScript:


For simple expressions, you can return the result of the script. Note that this may break with more complicated expressions:

result = page.evaluate_script('4 + 4');


In drivers which support it, you can accept, dismiss and respond to alerts, confirms and prompts.

You can accept or dismiss alert messages by wrapping the code that produces an alert in a block:

accept_alert do
  click_link('Show Alert')

You can accept or dismiss a confirmation by wrapping it in a block, as well:

dismiss_confirm do
  click_link('Show Confirm')

You can accept or dismiss prompts as well, and also provide text to fill in for the response:

accept_prompt(with: 'Linus Torvalds') do
  click_link('Show Prompt About Linux')

All modal methods return the message that was presented. So, you can access the prompt message by assigning the return to a variable:

message = accept_prompt(with: 'Linus Torvalds') do
  click_link('Show Prompt About Linux')
expect(message).to eq('Who is the chief architect of Linux?')


It can be useful to take a snapshot of the page as it currently is and take a look at it:


You can also retrieve the current state of the DOM as a string using page.html.

print page.html

This is mostly useful for debugging. You should avoid testing against the contents of page.html and use the more expressive finder methods instead.

Finally, in drivers that support it, you can save a screenshot:


Or have it save and automatically open:



It is possible to customize how Capybara finds elements. At your disposal are two options, Capybara.exact and Capybara.match.


Capybara.exact and the exact option work together with the is expression inside the XPath gem. When exact is true, all is expressions match exactly, when it is false, they allow substring matches. Many of the selectors built into Capybara use the is expression. This way you can specify whether you want to allow substring matches or not. Capybara.exact is false by default.

For example:

click_link("Password") # also matches "Password confirmation"
Capybara.exact = true
click_link("Password") # does not match "Password confirmation"
click_link("Password", exact: false) # can be overridden


Using Capybara.match and the equivalent match option, you can control how Capybara behaves when multiple elements all match a query. There are currently four different strategies built into Capybara:

  1. first: Just picks the first element that matches.
  2. one: Raises an error if more than one element matches.
  3. smart: If exact is true, raises an error if more than one element matches, just like one. If exact is false, it will first try to find an exact match. An error is raised if more than one element is found. If no element is found, a new search is performed which allows partial matches. If that search returns multiple matches, an error is raised.
  4. prefer_exact: If multiple matches are found, some of which are exact, and some of which are not, then the first exactly matching element is returned.

The default for Capybara.match is :smart. To emulate the behaviour in Capybara 2.0.x, set Capybara.match to :one. To emulate the behaviour in Capybara 1.x, set Capybara.match to :prefer_exact.

Transactions and database setup

Some Capybara drivers need to run against an actual HTTP server. Capybara takes care of this and starts one for you in the same process as your test, but on another thread. Selenium is one of those drivers, whereas RackTest is not.

If you are using a SQL database, it is common to run every test in a transaction, which is rolled back at the end of the test, rspec-rails does this by default out of the box for example. Since transactions are usually not shared across threads, this will cause data you have put into the database in your test code to be invisible to Capybara.

Cucumber handles this by using truncation instead of transactions, i.e. they empty out the entire database after each test. You can get the same behaviour by using a gem such as database_cleaner.

It is also possible to force your ORM to use the same transaction for all threads. This may have thread safety implications and could cause strange failures, so use caution with this approach. It can be implemented in ActiveRecord through the following monkey patch:

class ActiveRecord::Base
  mattr_accessor :shared_connection
  @@shared_connection = nil

  def self.connection
    @@shared_connection || retrieve_connection
ActiveRecord::Base.shared_connection = ActiveRecord::Base.connection

Asynchronous JavaScript (Ajax and friends)

When working with asynchronous JavaScript, you might come across situations where you are attempting to interact with an element which is not yet present on the page. Capybara automatically deals with this by waiting for elements to appear on the page.

When issuing instructions to the DSL such as:

expect(page).to have_content('baz')

If clicking on the foo link triggers an asynchronous process, such as an Ajax request, which, when complete will add the bar link to the page, clicking on the bar link would be expected to fail, since that link doesn’t exist yet. However Capybara is smart enough to retry finding the link for a brief period of time before giving up and throwing an error. The same is true of the next line, which looks for the content baz on the page; it will retry looking for that content for a brief time. You can adjust how long this period is (the default is 2 seconds):

Capybara.default_max_wait_time = 5

Be aware that because of this behaviour, the following two statements are not equivalent, and you should always use the latter!


The former would immediately fail because the content has not yet been removed. Only the latter would wait for the asynchronous process to remove the content from the page.

Capybara’s Rspec matchers, however, are smart enough to handle either form. The two following statements are functionally equivalent:

expect(page).not_to have_xpath('a')
expect(page).to have_no_xpath('a')

Capybara’s waiting behaviour is quite advanced, and can deal with situations such as the following line of code:

expect(find('#sidebar').find('h1')).to have_content('Something')

Even if JavaScript causes #sidebar to disappear off the page, Capybara will automatically reload it and any elements it contains. So if an AJAX request causes the contents of #sidebar to change, which would update the text of the h1 to “Something”, and this happened, this test would pass. If you do not want this behaviour, you can set Capybara.automatic_reload to false.

Using the DSL elsewhere

You can mix the DSL into any context by including Capybara::DSL:

require 'capybara'
require 'capybara/dsl'

Capybara.default_driver = :webkit

module MyModule
  include Capybara::DSL

  def login!
    within("//form[@id='session']") do
      fill_in 'Email', :with => '[email protected]'
      fill_in 'Password', :with => 'password'
    click_button 'Sign in'

This enables its use in unsupported testing frameworks, and for general-purpose scripting.

Calling remote servers

Normally Capybara expects to be testing an in-process Rack application, but you can also use it to talk to a web server running anywhere on the internet, by setting app_host:

Capybara.current_driver = :selenium
Capybara.app_host = 'http://www.google.com'

Note: the default driver (:rack_test) does not support running against a remote server. With drivers that support it, you can also visit any URL directly:


By default Capybara will try to boot a rack application automatically. You might want to switch off Capybara’s rack server if you are running against a remote application:

Capybara.run_server = false

Using the sessions manually

For ultimate control, you can instantiate and use a Session manually.

require 'capybara'

session = Capybara::Session.new(:webkit, my_rack_app)
session.within("//form[@id='session']") do
  session.fill_in 'Email', :with => '[email protected]'
  session.fill_in 'Password', :with => 'password'
session.click_button 'Sign in'

XPath, CSS and selectors

Capybara does not try to guess what kind of selector you are going to give it, and will always use CSS by default. If you want to use XPath, you’ll need to do:

within(:xpath, '//ul/li') { ... }
find(:xpath, '//ul/li').text
find(:xpath, '//li[contains(.//a[@href = "#"]/text(), "foo")]').value

Alternatively you can set the default selector to XPath:

Capybara.default_selector = :xpath

Capybara allows you to add custom selectors, which can be very useful if you find yourself using the same kinds of selectors very often:

Capybara.add_selector(:id) do
  xpath { |id| XPath.descendant[XPath.attr(:id) == id.to_s] }

Capybara.add_selector(:row) do
  xpath { |num| ".//tbody/tr[#{num}]" }

Capybara.add_selector(:flash_type) do
  css { |type| "#flash.#{type}" }

The block given to xpath must always return an XPath expression as a String, or an XPath expression generated through the XPath gem. You can now use these selectors like this:

find(:id, 'post_123')
find(:row, 3)
find(:flash_type, :notice)

Beware the XPath // trap

In XPath the expression // means something very specific, and it might not be what you think. Contrary to common belief, // means “anywhere in the document” not “anywhere in the current context”. As an example:

page.find(:xpath, '//body').all(:xpath, '//script')

You might expect this to find all script tags in the body, but actually, it finds all script tags in the entire document, not only those in the body! What you’re looking for is the .// expression which means “any descendant of the current node”:

page.find(:xpath, '//body').all(:xpath, './/script')

The same thing goes for within:

within(:xpath, '//body') do
  page.find(:xpath, './/script')
  within(:xpath, './/table/tbody') do

Configuring and adding drivers

Capybara makes it convenient to switch between different drivers. It also exposes an API to tweak those drivers with whatever settings you want, or to add your own drivers. This is how to override the selenium driver configuration to use chrome:

Capybara.register_driver :selenium do |app|
  Capybara::Selenium::Driver.new(app, :browser => :chrome)

However, it’s also possible to give this configuration a different name.

Capybara.register_driver :selenium_chrome do |app|
  Capybara::Selenium::Driver.new(app, :browser => :chrome)

Then tests can switch between using different browsers effortlessly:

Capybara.current_driver = :selenium_chrome

Whatever is returned from the block should conform to the API described by Capybara::Driver::Base, it does not however have to inherit from this class. Gems can use this API to add their own drivers to Capybara.

The Selenium wiki has additional info about how the underlying driver can be configured.


  • Access to session and request is not possible from the test, Access to response is limited. Some drivers allow access to response headers and HTTP status code, but this kind of functionality is not provided by some drivers, such as Selenium.
  • Access to Rails specific stuff (such as controller) is unavailable, since we’re not using Rails’ integration testing.
  • Freezing time: It’s common practice to mock out the Time so that features that depend on the current Date work as expected. This can be problematic on ruby/platform combinations that don’t support access to a monotonic process clock, since Capybara’s Ajax timing uses the system time, resulting in Capybara never timing out and just hanging when a failure occurs. It’s still possible to use gems which allow you to travel in time, rather than freeze time. One such gem is Timecop.
  • When using Rack::Test, beware if attempting to visit absolute URLs. For example, a session might not be shared between visits to posts_path and posts_url. If testing an absolute URL in an Action Mailer email, set default_url_options to match the Rails default of www.example.com.


To set up a development environment, simply do:

bundle install
bundle exec rake  # run the test suite

See CONTRIBUTING.md for how to send issues and pull requests.